Момент инерции при параллельном переносе осей. Изменение моментов энергии при параллельном переносе осей Зависимость моментов инерции при параллельном переносе осей



2. Статические моменты площади сечения относительно осей Oz и Оy (см 3 , м 3):

4. Центробежный момент инерции сечения относительно осей Oz и Oy (см 4 , м 4):

Так как , то

Осевые J z и J y и полярный J p моменты инерции всегда положительные, так как под знаком интеграла находятся координаты во второй степени. Статические моменты S z и S y , а также центробежный момент инерции J zy могут быть как положительными, так и отрицательными.

В сортаменте прокатной стали для уголков приводятся значения центробежных моментов по модулю. В расчет следует вводить их значения с учетом знака.

Для определения знака центробежного момента уголка (рис. 3.2) мысленно представим его в виде суммы трех интегралов, которые вычисляются отдельно для частей сечения, расположенных в четвертях системы координат. Очевидно, что для частей, расположенных в I и III четвертях будем иметь положительное значение этого интеграла, так как произведение zydA будет положительным, а интегралы, вычисляемые для частей, расположенных во II и IV четвертях будут отрицательными (произведение zydA будет отрицательным). Таким образом, для уголка на рис. 3.2,а значение центробежного момента инерции будет отрицательным.

Рассуждая подобным образом для сечения, имеющего хотя бы одну ось симметрии (рис. 3.2,б) можно прийти к заключению, что центробежный момент инерции J zy равен нулю, если одна из осей (Оz или Оy) является осью симметрии сечения. Действительно, для частей треугольника, расположенных в 1 и 2 четвертях центробежные моменты инерции будут отличаться только знаком. Тоже можно сказать относительно частей, которые находятся в III и IV четвертях.

Статические моменты. Определение центра тяжести

Вычислим статические моменты относительно осей Оz и Оy прямоугольника, показанного на рис. 3.3.

Рис 3.3. К вычислению статических моментов

Здесь: А – площадь сечения, y C и z C – координаты его центра тяжести. Центр тяжести прямоугольника находится на пересечении диагоналей.

Очевидно, что, если оси, относительно которых вычисляются статические моменты, проходят через центр тяжести фигуры, то его координаты равны нулю (z C = 0, y C = 0), и, в соответствии с формулой (3.6), статические моменты также будут равны нулю. Таким образом, центр тяжести сечения – это точка, обладающая следующим свойством: статический момент относительно любой оси, проходящей через нее , равен нулю .

Формулы (3.6) позволяют найти координаты центра тяжести z C и y C сечения сложной формы. Если сечение можно представить в виде n частей, для которых известны площади и положение центров тяжести, то вычисление координат центра тяжести всего сечения можно записать в виде:

. (3.7)

Изменение моментов инерции при параллельном переносе осей

Пусть известны моменты инерции J z , J y и J zy относительно осей Oyz . Необходимо определить моменты инерции J Z , J Y и J ZY относительно осей O 1 YZ , параллельных осям Oyz (рис. 3.4) и отстоящих от них на расстояния a (по горизонтали) и b (по вертикали)

Рис 3.4. Изменение моментов инерции при параллельном переносе осей

Координаты элементарной площадки dA связаны между собой следующими равенствами: Z = z + a ; Y = y + b .

Вычислим моменты инерции J Z , J Y и J ZY .


(3.8)

(3.9)

(3.10)

Если точка O пересечения осей Oyz совпадает с точкой С – центром тяжести сечения (рис. 3.5) статические моменты S z и S y становятся равными нулю, и формулы упрощаютсяY i и Z i нужно брать с учетом знаков. На осевые моменты инерции знаки координат не повлияют (координаты возводятся во вторую степень), а вот на центробежный момент инерции знак координаты окажет существенное влияние (произведение Z i Y i A i может оказаться отрицательным).

Дано: моменты инерции фигуры относительно осей z, y; расстояния между этими и параллельными осями z 1 , y 1 – a, b.

Определить: моменты инерции относительно осей z 1 , y 1 (рис.4.7).

Координаты любой точки в новой системе z 1 Oy 1 можно выразить через координаты в старой системе так:

z 1 = z + b, y 1 = y + a.

Подставляем эти значения в формулы (4.6) и (4.8) и интегрируем почленно:

В соответствии с формулами (4.1) и (4.6) получим

,

, (4.13)

Если исходные данные оси zCy – центральные, то статические моменты S z и

S y равны нулю и формулы (4.13) упрощаются:

,

, (4.14)

.

Пример: определить осевой момент инерции прямоугольника относительно оси z 1 , проходящей через основание (рис.4.6,а). По формуле (4.14)

4.4. Зависимость между моментами инерции при повороте осей

Дано: моменты инерции произвольной фигуры относительно координатных осей z, y; угол поворота этих осей α (рис.4.8). Считаем угол поворота против часовой стрелки положительным.

Определить: моменты инерции фигуры относительно z 1 , y 1 .

Координаты произвольной элементарной площадки dF в новых осях выражаются через координаты прежней системы осей следующим образом:

z 1 = OB = OE + EB = OE + DC = zcos α + ysin α,

y 1 = AB = AC – BC = AC – ED = ycos α – zsin α.

Подставим эти значения в (4.6) и (4.8) и проинтегрируем почленно:

,

,

Учитывая формулы (4.6) и (4.8), окончательно находим:

. (4.16)

Складывая формулы (4.15), получим: (4.17)

Таким образом, при повороте осей сумма осевых моментов инерции остаётся постоянной . При этом каждый из них меняется в соответствии с формулами (4.15). Ясно, что при каком-то положении осей моменты инерции будут иметь экстремальные значения: один из них будет наибольшим, другой – наименьшим.

4.5. Главные оси и главные моменты инерции

Наибольшее практическое значение имеют главные центральные оси, центробежный момент инерции относительно которых равен нулю. Будем обозначать такие оси буквами u, υ. Следовательно, J uυ = 0. Начальную произвольную систему координат z, y надо повернуть на такой угол α 0 , чтобы центробежный момент инерции стал равным нулю. Приравняв нулю (4.16), получим

. (4.18)

Оказывается, что теория моментов инерции и теория плоского напряжённого состояния описываются одним и тем же математическим аппаратом, так как формулы (4.15) – (4.18) идентичны формулам (3.10), (3.11) и (3.18). Только вместо нормальных напряжений σ записываются осевые моменты инерции J z и J y , а вместо касательных напряжений τ zy – центробежный момент инерции J zy . Поэтому формулы для главных осевых моментов инерции приводим без вывода, по аналогии с формулами (3.18):

.(4.19)

Полученные из (4.18) два значения угла α 0 отличаются друг от друга на 90 0 , меньший из этих углов по абсолютной величине не превышает 45 0 .

      Радиус инерции и момент сопротивления

Момент инерции фигуры относительно какой-либо оси можно представить в виде произведения площади фигуры на квадрат некоторой величины, называемой радиусом инерции :

, (4.20)

где i z – радиус инерции относительно оси z.

Из выражения (4.20) следует, что

,
. (4.21)

Главным центральным осям инерции соответствуют главные радиусы инерции

,
. (4.22)

Зная главные радиусы инерции, можно графическим способом найти радиус инерции (а, следовательно, и момент инерции) относительно произвольной оси.

Рассмотрим еще одну геометрическую характеристику, характеризующую прочность стержня при кручении и изгибе – момент сопротивления . Момент сопротивления равен моменту инерции, делённому на расстояние от оси (или от полюса) до наиболее удалённой точки сечения. Размерность момента сопротивления – единица длины в кубе (см 3).

Для прямоугольника (рис.4.6,а)
,
, поэтому осевые моменты сопротивления

,
. (4.23)

Для круга
(рис.4.6,б),
, поэтому полярный момент сопротивления

. (4.24)

Для круга
,
, поэтому осевой момент сопротивления

. (4.25)

Рассмотрим определение моментов инерции плоской фигуры (рис) относительно осей ${Z_1}$ и ${Y_1}$ при известных моментах инерции относительно оси $X$ и $Y$.

${I_{{x_1}}} = \int\limits_A {y_1^2dA} = \int\limits_A {{{\left({y + a} \right)}^2}dA} = \int\limits_A {\left({{y^2} + 2ay + {a^2}} \right)dA} = \int\limits_A {{y^2}dA} + 2a\int\limits_A {ydA} + {a^2}\int\limits_A {dA} = $

$ = {I_x} + 2a{S_x} + {a^2}A$,

где ${S_x}$ - статический момент фигуры относительно оси $X$.

Аналогично относительно оси ${Y_1}$

${I_{{y_1}}} = {I_y} + 2a{S_y} + {b^2}A$.

Центробежный момент инерции относительно осей ${X_1}$ и ${Y_1}$

${I_{{x_1}{y_1}}} = \int\limits_A {{x_1}{y_1}dA} = \int\limits_A {\left({x + b} \right)\left({y + a} \right)dA} = \int\limits_A {\left({xy + xa + by + ba} \right)dA} = \int\limits_A {xydA} + a\int\limits_A {xdA} + b\int\limits_A {ydA} + ab\int\limits_A {dA} = {I_{xy}} + a{S_x} + b{S_y} + abA$

Чаще всего используется переход от центральных осей (собственных осей плоской фигуры) в произвольных, параллельных. Тогда ${S_x} = 0$, ${S_y} = 0$, так как оси $X$ и $Y$ являются центральными. Окончательно имеем

где , - собственные моменты инерции, т. е. моменты инерции относительно собственных центральных осей;

$a$, $b$ - расстояния от центральных осей до рассматриваемых;

$A$ - площадь фигуры.

Следует отметить, что при определении центробежного момента инерции в величинах $a$ и $b$ должен быть учтен знак, то есть они являются по сути, координатами центра тяжести фигуры в рассматриваемых осях. При определении осевых моментов инерции эти величины подставляют по модулю (как расстояния), поскольку они все равно возвышаются до квадрата.

С помощью формул параллельного переноса возможно осуществлять переход от центральных осей к произвольным, или же наоборот - от произвольных центральных осей. Первый переход осуществляется со знаком "+". Второй переход осуществляется со знаком " - ".

Примеры использования формул перехода между параллельными осями

Прямоугольное сечение

Определим центральные моменты инерции прямоугольника при известных моментах инерции относительно осей $Z$ и $Y$.

${I_x} = \frac{{b{h^3}}}{3}$; ${I_y} = \frac{{h{b^3}}}{3}$.

.

Аналогично ${I_y} = \frac{{h{b^3}}}{{12}}$.

Треугольное сечение

Определим центральные моменты инерции треугольника при известном моменте инерции относительно основы ${I_x} = \frac{{b{h^3}}}{{12}}$.

.

Относительно центральной оси ${Y_c}$ треугольник имеет другую конфигурацию, поэтому рассмотрим следующее. Момент инерции всей фигуры относительно оси ${Y_c}$ равен сумме момента инерции треугольника $ABD$ относительно оси ${Y_c}$ и момента инерции треугольника $CBD$ относительно оси ${Y_c}$, то есть

.

Определение момента инерции составного сечения

Составленным считаем сечение, состоит из отдельных элементов, геометрические характеристики которых известны. Площадь, статический момент и моменты инерции составной фигуры равны сумме соответствующих характеристик их составляющих. Если составлен сечение можно образовать путем вырезания одной фигуры из другой, геометрические характеристики вырезанной фигуры вычитаются. Например, моменты инерции составной фигуры, показанной на рис. будут определяться так

$I_z^{} = \frac{{120 \cdot {{22}^3}}}{{12}} - 2 \cdot \frac{{50 \cdot {{16}^3}}}{{12}} = 72\,300$см 4 .

$I_y^{} = \frac{{22 \cdot {{120}^3}}}{{12}} - 2 \cdot \left({\frac{{16 \cdot {{50}^3}}}{{12}} + 50 \cdot 16 \cdot {{29}^2}} \right) = 1\,490\,000$см 4

Изменение моментов инерции стержня при параллельном переносе осей.

В дополнении к статическим моментам рассмотрим ещё три следующих интеграла:

Где по прежнему через х и у обозначены текущие координаты элементарной площадки dF в произвольно взятой системе координат xOy. Первые 2 интеграла называются осевыми моментами инерции сечения относительно осей х и у соответственно. Третий интеграл называется центробежным моментом инерции сечения относительно х, у. Осевые моменты всегда положительны, т.к. положительной считается площадь dF. Центробежный момент инерции может быть как положительным, так и отрицательным, в зависимости от расположения сечения относительно осей x, у.

Выведем формулы преобразования моментов инерции при параллельном переносе осей. (см рис). Будем считать, что нам заданы моменты инерции и статические моменты относительно осей х 1 и у 1 . Требуется определить моменты относительно осей х2 и у2.

Подставляя сюда x 2 =x 1 -a и y 2 =y 1 -b Находим

Раскрывая скобки, имеем.

Если оси х 1 и у 1 – центральные, то S x 1 = S y 1 =0 и полученные выражения упрощаются:

При параллельном переносе осей (если одна из осей – центральная) осевые моменты инерции изменяются на величину, равную произведению площади сечения на квадрат расстояния между осями.

Понравилась статья? Поделиться с друзьями: